کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660034 1344346 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rigid continua and transfinite inductive dimension
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Rigid continua and transfinite inductive dimension
چکیده انگلیسی

We introduce a general method of resolving first countable, compact spaces that allows accurate estimate of inductive dimensions. We apply this method to construct, inter alia, for each ordinal number α>1 of cardinality ⩽c, a rigid, first countable, non-metrizable continuum Sα with . Sα is the increment in some compactification of [0,1) and admits a fully closed, ring-like map onto a metric continuum. Moreover, every subcontinuum of Sα is separable. Additionally, Sα can be constructed so as to be: (1) a hereditarily indecomposable Anderson–Choquet continuum with covering dimension a given natural number n, provided α>n, (2) a hereditarily decomposable and chainable weak Cook continuum, (3) a hereditarily decomposable and chainable Cook continuum, provided α is countable, (4) a hereditarily indecomposable Cook continuum with covering dimension one, or (5) a Cook continuum with covering dimension two, provided α>2.We also produce a chainable and hereditarily decomposable space Sω(c+) with , , trind0Sω(c+) and trInd0Sω(c+) all equal to ω(c+), the first ordinal of cardinality c+.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 9, 15 June 2010, Pages 1690-1702