کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4660093 | 1344350 | 2014 | 10 صفحه PDF | دانلود رایگان |

This paper investigates fundamental theorems of regular variation (Uniform Convergence, Representation, and Characterization Theorems) some of which, in the classical setting of regular variation in R, rely in an essential way on the additive semigroup of natural numbers N (e.g. de Bruijn's Representation Theorem for regularly varying functions). Other such results include Goldie's direct proof of the Uniform Convergence Theorem and Seneta's version of Kendall's theorem connecting sequential definitions of regular variation with their continuous counterparts (for which see Bingham and Ostaszewski (2010) [13], ). We show how to interpret these in the topological group setting established in Bingham and Ostaszewski (2010) [12] as connecting N-flow and R-flow versions of regular variation, and in so doing generalize these theorems to Rd. We also prove a flow version of the classical Characterization Theorem of regular variation.
Journal: Topology and its Applications - Volume 157, Issue 13, 15 August 2010, Pages 2014-2023