کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4660201 | 1344355 | 2010 | 13 صفحه PDF | دانلود رایگان |

Link-homotopy and self Δ-equivalence are equivalence relations on links. It was shown by J. Milnor (resp. the last author) that Milnor invariants determine whether or not a link is link-homotopic (resp. self Δ-equivalent) to a trivial link. We study link-homotopy and self Δ-equivalence on a certain component of a link with fixing the other components, in other words, homotopy and Δ-equivalence of knots in the complement of a certain link. We show that Milnor invariants determine whether a knot in the complement of a trivial link is null-homotopic, and give a sufficient condition for such a knot to be Δ-equivalent to the trivial knot. We also give a sufficient condition for knots in the complements of the trivial knot to be equivalent up to Δ-equivalence and concordance.
Journal: Topology and its Applications - Volume 157, Issue 7, 1 May 2010, Pages 1215-1227