کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660201 1344355 2010 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Homotopy, Δ-equivalence and concordance for knots in the complement of a trivial link
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Homotopy, Δ-equivalence and concordance for knots in the complement of a trivial link
چکیده انگلیسی

Link-homotopy and self Δ-equivalence are equivalence relations on links. It was shown by J. Milnor (resp. the last author) that Milnor invariants determine whether or not a link is link-homotopic (resp. self Δ-equivalent) to a trivial link. We study link-homotopy and self Δ-equivalence on a certain component of a link with fixing the other components, in other words, homotopy and Δ-equivalence of knots in the complement of a certain link. We show that Milnor invariants determine whether a knot in the complement of a trivial link is null-homotopic, and give a sufficient condition for such a knot to be Δ-equivalent to the trivial knot. We also give a sufficient condition for knots in the complements of the trivial knot to be equivalent up to Δ-equivalence and concordance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 7, 1 May 2010, Pages 1215-1227