کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4660217 | 1344356 | 2011 | 8 صفحه PDF | دانلود رایگان |

We prove that any continuous map of an N-dimensional simplex ΔN with colored vertices to a d-dimensional manifold M must map r points from disjoint rainbow faces of ΔN to the same point in M: For this we have to assume that N⩾(r−1)(d+1), no r vertices of ΔN get the same color, and our proof needs that r is a prime. A face of ΔN is a rainbow face if all vertices have different colors.This result is an extension of our recent “new colored Tverberg theorem”, the special case of M=Rd. It is also a generalization of Volovikovʼs 1996 topological Tverberg theorem for maps to manifolds, which arises when all color classes have size 1 (i.e., without color constraints); for this special case Volovikovʼs proof, as well as ours, works when r is a prime power.
Journal: Topology and its Applications - Volume 158, Issue 12, 1 August 2011, Pages 1445-1452