کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4660284 | 1344359 | 2009 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Goldstine Theorem for asymmetric normed linear spaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
هندسه و توپولوژی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is well known that if (X,q) is an asymmetric normed linear space, then the function qs defined on X by qs(x)=max{q(x),q(−x)}, is a norm on the linear space X. However, the lack of symmetry in the definition of the asymmetric norm q yields an algebraic asymmetry in the dual space of (X,q). This fact establishes a significant difference with the standard results on duality that hold in the case of locally convex spaces. In this paper we study some aspects of a reflexivity theory in the setting of asymmetric normed linear spaces. In particular, we obtain a version of the Goldstine Theorem to these spaces which is applied to prove, among other results, a characterization of reflexive asymmetric normed linear spaces.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 156, Issue 13, 1 August 2009, Pages 2284-2291
Journal: Topology and its Applications - Volume 156, Issue 13, 1 August 2009, Pages 2284-2291