کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660284 1344359 2009 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Goldstine Theorem for asymmetric normed linear spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
The Goldstine Theorem for asymmetric normed linear spaces
چکیده انگلیسی

It is well known that if (X,q) is an asymmetric normed linear space, then the function qs defined on X by qs(x)=max{q(x),q(−x)}, is a norm on the linear space X. However, the lack of symmetry in the definition of the asymmetric norm q yields an algebraic asymmetry in the dual space of (X,q). This fact establishes a significant difference with the standard results on duality that hold in the case of locally convex spaces. In this paper we study some aspects of a reflexivity theory in the setting of asymmetric normed linear spaces. In particular, we obtain a version of the Goldstine Theorem to these spaces which is applied to prove, among other results, a characterization of reflexive asymmetric normed linear spaces.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 156, Issue 13, 1 August 2009, Pages 2284-2291