کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660452 1344369 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Strong distributional chaos and minimal sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Strong distributional chaos and minimal sets
چکیده انگلیسی

In the class T of triangular maps of the square we consider the strongest notion of distributional chaos, DC1, originally introduced by Schweizer and Smítal [B. Schweizer, J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994) 737–854] for continuous maps of the interval. We show that there is a DC1 homeomorphism F∈T such that any ω-limit set contains unique minimal set. This homeomorphism is constructed such that it is increasing on some fibres, and decreasing on the other ones. Consequently, F has zero topological entropy. Similar behavior is impossible when F is nondecreasing on the fibres, as shown by Paganoni and Smítal [L. Paganoni, J. Smítal, Strange distributionally chaotic triangular maps, Chaos Solitons Fractals 26 (2005) 581–589]. This result contributes to the solution of an old problem of Sharkovsky concerning classification of triangular maps but it is interesting by itself since it implies interesting open problems concerning relations between DC1 and minimality.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 156, Issue 9, 1 May 2009, Pages 1673-1678