کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660540 1344373 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A circular embedding of a graph in Euclidean 3-space
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
A circular embedding of a graph in Euclidean 3-space
چکیده انگلیسی

A spatial embedding of a graph G is an embedding of G into the 3-dimensional Euclidean space R3. J.H. Conway and C.McA. Gordon proved that every spatial embedding of the complete graph on 7 vertices contains a nontrivial knot. A linear spatial embedding of a graph is an embedding which maps each edge to a single straight line segment. In this paper, we construct a linear spatial embedding of the complete graph on 2n−1 (or 2n) vertices which contains the torus knot T(2n−5,2) (n⩾4). A circular spatial embedding of a graph is an embedding which maps each edge to a round arc. We define the circular number of a knot as the minimal number of round arcs in R3 among such embeddings of the knot. We show that a knot has circular number 3 if and only if the knot is a trefoil knot, and the figure-eight knot has circular number 4.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 1, 1 January 2010, Pages 213-219