کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660587 1344376 2010 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the categorical meaning of Hausdorff and Gromov distances, I
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
On the categorical meaning of Hausdorff and Gromov distances, I
چکیده انگلیسی

Hausdorff and Gromov distances are introduced and treated in the context of categories enriched over a commutative unital quantale V. The Hausdorff functor which, for every V-category X, provides the powerset of X with a suitable V-category structure, is part of a monad on V-Cat whose Eilenberg–Moore algebras are order-complete. The Gromov construction may be pursued for any endofunctor K of V-Cat. In order to define the Gromov “distance” between V-categories X and Y we use V-modules between X and Y, rather than V-category structures on the disjoint union of X and Y. Hence, we first provide a general extension theorem which, for any K, yields a lax extension to the category V-Mod of V-categories, with V-modules as morphisms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 8, 1 June 2010, Pages 1275-1295