کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660596 1344376 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mrówka maximal almost disjoint families for uncountable cardinals
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Mrówka maximal almost disjoint families for uncountable cardinals
چکیده انگلیسی

We consider generalizations of a well-known class of spaces, called by S. Mrówka, N∪R, where R is an infinite maximal almost disjoint family (MADF) of countable subsets of the natural numbers N. We denote these generalizations by ψ=ψ(κ,R) for κ⩾ω. Mrówka proved the interesting theorem that there exists an R such that |βψ(ω,R)∖ψ(ω,R)|=1. In other words there is a unique free z-ultrafilter p0 on the space ψ. We extend this result of Mrówka to uncountable cardinals. We show that for κ⩽c, Mrówka's MADF R can be used to produce a MADF M⊂ω[κ] such that |βψ(κ,M)∖ψ(κ,M)|=1. For κ>c, and every M⊂ω[κ], it is always the case that |βψ(κ,M)∖ψ(κ,M)|≠1, yet there exists a special free z-ultrafilter p on ψ(κ,M) retaining some of the properties of p0. In particular both p and p0 have a clopen local base in βψ (although βψ(κ,M) need not be zero-dimensional). A result for κ>c, that does not apply to p0, is that for certain κ>c, p is a P-point in βψ.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 157, Issue 8, 1 June 2010, Pages 1379-1394