کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4660667 1344379 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal Morse flows on compact manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
Minimal Morse flows on compact manifolds
چکیده انگلیسی

In this paper we prove, using the Poincaré–Hopf inequalities, that a minimal number of non-degenerate singularities can be computed in terms only of abstract homological boundary information. Furthermore, this minimal number can be realized on some manifold with non-empty boundary satisfying the abstract homological boundary information. In fact, we present all possible indices and types (connecting or disconnecting) of singularities realizing this minimal number. The Euler characteristics of all manifolds realizing this minimal number are obtained and the associated Lyapunov graphs of Morse type are described and shown to have the lowest topological complexity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 153, Issue 18, 1 December 2006, Pages 3450-3466