کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4660904 | 1344391 | 2009 | 9 صفحه PDF | دانلود رایگان |

A topologized semigroup X having an evenly continuous resp., topologically equicontinuous, family RX of right translations is investigated. It is shown that: (1) every left semitopological semigroup X with an evenly continuous family RX is a topological semigroup, (2) a semitopological group X is a paratopological group if and only if the family RX is evenly continuous and (3) a semitopological group X is a topological group if and only if the family RX is topologically equicontinuous. In particular, we get that for any paratopological group X which is not a topological group, the family RX provides an example of a transitive group of homeomorphisms of X that is evenly continuous and not topologically equicontinuous. The last conclusion answers negatively a question posed by H.L. Royden.
Journal: Topology and its Applications - Volume 156, Issue 7, 1 April 2009, Pages 1289-1297