کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4661268 1344417 2006 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High distance Heegaard splittings of 3-manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات هندسه و توپولوژی
پیش نمایش صفحه اول مقاله
High distance Heegaard splittings of 3-manifolds
چکیده انگلیسی

J. Hempel [J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (3) (2001) 631–657] used the curve complex associated to the Heegaard surface of a splitting of a 3-manifold to study its complexity. He introduced the distance of a Heegaard splitting as the distance between two subsets of the curve complex associated to the handlebodies. Inspired by a construction of T. Kobayashi [T. Kobayashi, Casson–Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds, Osaka J. Math. 25 (3) (1988) 553–573], J. Hempel [J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (3) (2001) 631–657] proved the existence of arbitrarily high distance Heegaard splittings.In this work we explicitly define an infinite sequence of 3-manifolds {Mn} via their representative Heegaard diagrams by iterating a 2-fold Dehn twist operator. Using purely combinatorial techniques we are able to prove that the distance of the Heegaard splitting of Mn is at least n.Moreover, we show that π1(Mn) surjects onto π1(Mn−1). Hence, if we assume that M0 has nontrivial boundary then it follows that the first Betti number β1(Mn)>0 for all n⩾1. Therefore, the sequence {Mn} consists of Haken 3-manifolds for n⩾1 and hyperbolizable 3-manifolds for n⩾3.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Topology and its Applications - Volume 153, Issue 14, 1 August 2006, Pages 2631-2647