کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4661609 1633443 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Symmetry and the union of saturated models in superstable abstract elementary classes
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Symmetry and the union of saturated models in superstable abstract elementary classes
چکیده انگلیسی
Our main result (Theorem 1) suggests a possible dividing line (μ-superstable + μ-symmetric) for abstract elementary classes without using extra set-theoretic assumptions or tameness. This theorem illuminates the structural side of such a dividing line. Theorem 1Let K be an abstract elementary class with no maximal models of cardinality μ+ which satisfies the joint embedding and amalgamation properties. Suppose μ≥LS(K). If K is μ- and μ+-superstable and satisfies μ+-symmetry, then for any increasing sequence 〈Mi∈K≥μ+|i<θ<(sup⁡‖Mi‖)+〉 of μ+-saturated models, ⋃i<θMi is μ+-saturated. We also apply results of [18] and use towers to transfer symmetry from μ+ down to μ in abstract elementary classes which are both μ- and μ+-superstable: Theorem 2Suppose K is an abstract elementary class satisfying the amalgamation and joint embedding properties and that K is both μ- and μ+-superstable. If K has symmetry for non-μ+-splitting, then K has symmetry for non-μ-splitting.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 167, Issue 4, April 2016, Pages 395-407
نویسندگان
,