کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4661609 | 1633443 | 2016 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Symmetry and the union of saturated models in superstable abstract elementary classes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
منطق ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Our main result (Theorem 1) suggests a possible dividing line (μ-superstable + μ-symmetric) for abstract elementary classes without using extra set-theoretic assumptions or tameness. This theorem illuminates the structural side of such a dividing line. Theorem 1Let K be an abstract elementary class with no maximal models of cardinality μ+ which satisfies the joint embedding and amalgamation properties. Suppose μâ¥LS(K). If K is μ- and μ+-superstable and satisfies μ+-symmetry, then for any increasing sequence ãMiâKâ¥Î¼+|i<θ<(supâ¡âMiâ)+ã of μ+-saturated models, âi<θMi is μ+-saturated. We also apply results of [18] and use towers to transfer symmetry from μ+ down to μ in abstract elementary classes which are both μ- and μ+-superstable: Theorem 2Suppose K is an abstract elementary class satisfying the amalgamation and joint embedding properties and that K is both μ- and μ+-superstable. If K has symmetry for non-μ+-splitting, then K has symmetry for non-μ-splitting.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 167, Issue 4, April 2016, Pages 395-407
Journal: Annals of Pure and Applied Logic - Volume 167, Issue 4, April 2016, Pages 395-407
نویسندگان
M.M. VanDieren,