کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4661905 1633481 2012 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Measure, randomness and sublocales
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Measure, randomness and sublocales
چکیده انگلیسی

This paper investigates aspects of measure and randomness in the context of locale theory (point-free topology). We prove that every measure (σ-continuous valuation) μ, on the σ-frame of opens of a fitted σ-locale X, extends to a measure on the lattice of all σ-sublocales of X (Theorem 1). Furthermore, when μ is a finite measure with μ(X)=M, the σ-locale X has a smallest σ-sublocale of measure M (Theorem 2). In particular, when μ is a probability measure, X has a smallest σ-sublocale of measure 1. All σ prefixes can be dropped from these statements whenever X is a strongly Lindelöf locale, as is the case in the following applications. When μ is the Lebesgue measure on the Euclidean space Rn, Theorem 1 produces an isometry-invariant measure that, via the inclusion of the powerset P(Rn) in the lattice of sublocales, assigns a weight to every subset of Rn. (Contradiction is avoided because disjoint subsets need not be disjoint as sublocales.) When μ is the uniform probability measure on Cantor space {0,1}ω, the smallest measure-1 sublocale, given by Theorem 2, provides a canonical locale of random sequences, where randomness means that all probabilistic laws (measure-1 properties) are satisfied.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 163, Issue 11, November 2012, Pages 1642-1659