کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662033 1633506 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A minimal classical sequent calculus free of structural rules
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
A minimal classical sequent calculus free of structural rules
چکیده انگلیسی

Gentzen’s classical sequent calculus has explicit structural rules for contraction and weakening. They can be absorbed (in a right-sided formulation) by replacing the axiom P,¬P by Γ,P,¬P for any context Γ, and replacing the original disjunction rule with Γ,A,B implies Γ,A∨B.This paper presents a classical sequent calculus which is also free of contraction and weakening, but more symmetrically: both contraction and weakening are absorbed into conjunction, leaving the axiom rule intact. It uses a blended conjunction rule, combining the standard context-sharing and context-splitting rules: Γ,Δ,A and Γ,Σ,B implies Γ,Δ,Σ,A∧B. We refer to this system as minimal sequent calculus.We prove a minimality theorem for the propositional fragment : any propositional sequent calculus S (within a standard class of right-sided calculi) is complete if and only if S contains (that is, each rule of is derivable in S). Thus one can view as a minimal complete core of Gentzen’s .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 161, Issue 10, July 2010, Pages 1244-1253