کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662060 1633497 2011 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Dimensions, matroids, and dense pairs of first-order structures
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Dimensions, matroids, and dense pairs of first-order structures
چکیده انگلیسی

A structure M is pregeometric if the algebraic closure is a pregeometry in all structures elementarily equivalent to M. We define a generalisation: structures with an existential matroid. The main examples are superstable groups of Lascar U-rank a power of ω and d-minimal expansion of fields. Ultraproducts of pregeometric structures expanding an integral domain, while not pregeometric in general, do have a unique existential matroid.Generalising previous results by van den Dries, we define dense elementary pairs of structures expanding an integral domain and with an existential matroid, and we show that the corresponding theories have natural completions, whose models also have a unique existential matroid. We also extend the above result to dense tuples of structures.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 162, Issue 7, June–July 2011, Pages 514-543