کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4662121 | 1633509 | 2010 | 21 صفحه PDF | دانلود رایگان |

We say that κ is μ-hypermeasurable (or μ-strong) for a cardinal μ≥κ+ if there is an embedding j:V→M with critical point κ such that H(μ)V is included in M and j(κ)>μ. Such a j is called a witnessing embedding.Building on the results in [7], we will show that if V satisfies GCH and F is an Easton function from the regular cardinals into cardinals satisfying some mild restrictions, then there exists a cardinal-preserving forcing extension V∗ where F is realised on all V-regular cardinals and moreover, all F(κ)-hypermeasurable cardinals κ, where F(κ)>κ+, with a witnessing embedding j such that either j(F)(κ)=κ+ or j(F)(κ)≥F(κ), are turned into singular strong limit cardinals with cofinality ω. This provides some partial information about the possible structure of a continuum function with respect to singular cardinals with countable cofinality.As a corollary, this shows that the continuum function on a singular strong limit cardinal κ of cofinality ω is virtually independent of the behaviour of the continuum function below κ, at least for continuum functions which are simple in that 2α∈{α+,α++} for every cardinal α below κ (in this case every κ++-hypermeasurable cardinal in the ground model is witnessed by a j with either j(F)(κ)≥F(κ) or j(F)(κ)=κ+).
Journal: Annals of Pure and Applied Logic - Volume 161, Issue 7, April 2010, Pages 895-915