کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4662172 | 1633503 | 2010 | 19 صفحه PDF | دانلود رایگان |

Locatedness is one of the fundamental notions in constructive mathematics. The existence of a positivity predicate on a locale, i.e. the locale being overt, or open, has proved to be fundamental in constructive locale theory. We show that the two notions are intimately connected.Bishop defines a metric space to be compact if it is complete and totally bounded. A subset of a totally bounded set is again totally bounded iff it is located. So a closed subset of a Bishop compact set is Bishop compact iff it is located. We translate this result to formal topology. ‘Bishop compact’ is translated as compact and overt. We propose a definition of locatedness on subspaces of a formal topology, and prove that a closed subspace of a compact regular formal space is located iff it is overt. Moreover, a Bishop-closed subset of a complete metric space is Bishop compact — that is, totally bounded and complete — iff its localic completion is compact overt.Finally, we show by elementary methods that the points of the Vietoris locale of a compact regular locale are precisely its compact overt sublocales.We work constructively, predicatively and avoid the use of the axiom of countable choice.
Journal: Annals of Pure and Applied Logic - Volume 162, Issue 1, October 2010, Pages 36-54