کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662215 1633532 2008 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Completions of μ-algebras
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Completions of μ-algebras
چکیده انگلیسی

A μ-algebra is a model of a first-order theory that is an extension of the theory of bounded lattices, that comes with pairs of terms (f,μx.f) where μx.f is axiomatized as the least prefixed point of f, whose axioms are equations or equational implications.Standard μ-algebras are complete meaning that their lattice reduct is a complete lattice. We prove that any nontrivial quasivariety of μ-algebras contains a μ-algebra that has no embedding into a complete μ-algebra.We then focus on modal μ-algebras, i.e. algebraic models of the propositional modal μ-calculus. We prove that free modal μ-algebras satisfy a condition–reminiscent of Whitman’s condition for free lattices–which allows us to prove that (i) modal operators are adjoints on free modal μ-algebras, (ii) least prefixed points of Σ1-operations satisfy the constructive relation μx.f=⋁n≥0fn(⊥). These properties imply the following statement: the MacNeille–Dedekind completion of a free modal μ-algebra is a complete modal μ-algebra and moreover the canonical embedding preserves all the operations in the class of the fixed point alternation hierarchy.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 154, Issue 1, May 2008, Pages 27-50