کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4662335 | 1633489 | 2012 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Algorithmic correspondence and canonicity for distributive modal logic
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
منطق ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We define the algorithm ALBA for the language of the same distributive modal logic (DML) for which a Sahlqvist theorem was proved by Gehrke, Nagahashi, and Venema. Successful executions of ALBA compute the local first-order correspondents of input DML inequalities, and also guarantee their canonicity. The class of inequalities on which ALBA is successful is strictly larger than the newly introduced class of inductive inequalities, which in its turn properly extends the Sahlqvist inequalities of Gehrke et al. Evidence is given to the effect that, as their name suggests, inductive inequalities are the distributive counterparts of the inductive formulas of Goranko and Vakarelov in the classical setting.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 163, Issue 3, March 2012, Pages 338-376
Journal: Annals of Pure and Applied Logic - Volume 163, Issue 3, March 2012, Pages 338-376