کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662425 1633549 2006 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Frege systems for extensible modal logics
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Frege systems for extensible modal logics
چکیده انگلیسی

By a well-known result of Cook and Reckhow [S.A. Cook, R.A. Reckhow, The relative efficiency of propositional proof systems, Journal of Symbolic Logic 44 (1) (1979) 36–50; R.A. Reckhow, On the lengths of proofs in the propositional calculus, Ph.D. Thesis, Department of Computer Science, University of Toronto, 1976], all Frege systems for the classical propositional calculus (CPC) are polynomially equivalent. Mints and Kojevnikov [G. Mints, A. Kojevnikov, Intuitionistic Frege systems are polynomially equivalent, Zapiski Nauchnyh Seminarov POMI 316 (2004) 129–146] have recently shown p-equivalence of Frege systems for the intuitionistic propositional calculus (IPC) in the standard language, building on a description of admissible rules of IPC by Iemhoff [R. Iemhoff, On the admissible rules of intuitionistic propositional logic, Journal of Symbolic Logic 66 (1) (2001) 281–294]. We prove a similar result for an infinite family of normal modal logics, including K4, GL, S4, and .

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 142, Issues 1–3, October 2006, Pages 366-379