کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662490 1633553 2006 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Equivalence between Fraïssé’s conjecture and Jullien’s theorem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Equivalence between Fraïssé’s conjecture and Jullien’s theorem
چکیده انگلیسی

We say that a linear ordering L is extendible if every partial ordering that does not embed L can be extended to a linear ordering which does not embed L either. Jullien’s theorem is a complete classification of the countable extendible linear orderings. Fraïssé’s conjecture, which is actually a theorem, is the statement that says that the class of countable linear ordering, quasiordered by the relation of embeddability, contains no infinite descending chain and no infinite antichain. In this paper we study the strength of these two theorems from the viewpoint of Reverse Mathematics and Effective Mathematics. As a result of our analysis we get that they are equivalent over the basic system of .We also prove that Fraïssé’s conjecture is equivalent, over , to two other interesting statements. One that says that the class of well founded labeled trees, with labels from {+,−}, and with a very natural order relation, is well quasiordered. The other statement says that every linear ordering which does not contain a copy of the rationals is equimorphic to a finite sum of indecomposable linear orderings.While studying the proof theoretic strength of Jullien’s theorem, we prove the extendibility of many linear orderings, including ω2 and η, using just . Moreover, for all these linear orderings, L, we prove that any partial ordering, P, which does not embed L has a linearization, hyperarithmetic (or equivalently ) in P⊕L, which does not embed L.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 139, Issues 1–3, May 2006, Pages 1-42