کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662517 1633543 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intervals containing exactly one c.e. degree
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Intervals containing exactly one c.e. degree
چکیده انگلیسی

Cooper proved in [S.B. Cooper, Strong minimal covers for recursively enumerable degrees, Math. Logic Quart. 42 (1996) 191–196] the existence of a c.e. degree with a strong minimal cover . So is the greastest c.e. degree below . Cooper and Yi pointed out in [S.B. Cooper, X. Yi, Isolated d.r.e. degrees, University of Leeds, Dept. of Pure Math., 1995. Preprint] that this strongly minimal cover cannot be d.c.e., and meanwhile, they proposed the notion of isolated degrees: a d.c.e. degree is isolated by a c.e. degree if is the greatest c.e. degree below , and we also say that isolates . In [G. Wu, Bi-isolation in the d.c.e. degrees, J. Symbolic Logic 69 (2004) 409–420], Wu extended Cooper–Yi’s notion and proved that there are intervals of d.c.e. degrees containing exactly one c.e. degree . Following Cooper and Yi’s notion, is called a bi-isolating degree. The bi-isolating degrees are dense in the high c.e. degrees. Arslanov asked whether the bi-isolating degrees occur in every jump class. In this paper, we prove that there are low bi-isolating degrees, providing a partial solution to Arslanov’s question.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 146, Issue 1, April 2007, Pages 91-102