کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4662628 1633547 2006 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cardinal invariants of the continuum and combinatorics on uncountable cardinals
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
پیش نمایش صفحه اول مقاله
Cardinal invariants of the continuum and combinatorics on uncountable cardinals
چکیده انگلیسی

We explore the connection between combinatorial principles on uncountable cardinals, like stick and club, on the one hand, and the combinatorics of sets of reals and, in particular, cardinal invariants of the continuum, on the other hand. For example, we prove that additivity of measure implies that Martin’s axiom holds for any Cohen algebra. We construct a model in which club holds, yet the covering number of the null ideal is large. We show that for uncountable cardinals κ≤λ and F⊆[λ]κ, if all subsets of λ either contain, or are disjoint from, a member of F, then F has size at least etc. As an application, we solve the Gross space problem under c=ℵ2 by showing that there is such a space over any countable field. In two appendices, we solve problems of Fuchino, Shelah and Soukup, and of Kraszewski, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 144, Issues 1–3, December 2006, Pages 43-72