کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4662669 | 1633504 | 2010 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The computable Lipschitz degrees of computably enumerable sets are not dense
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
منطق ریاضی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The computable Lipschitz reducibility was introduced by Downey, Hirschfeldt and LaForte under the name of strong weak truth-table reducibility (Downey et al. (2004) [6], ). This reducibility measures both the relative randomness and the relative computational power of real numbers. This paper proves that the computable Lipschitz degrees of computably enumerable sets are not dense. An immediate corollary is that the Solovay degrees of strongly c.e. reals are not dense. There are similarities to Barmpalias and Lewis’ proof that the identity bounded Turing degrees of c.e. sets are not dense (George Barmpalias, Andrew E.M. Lewis (2006) [2]), however the problem for the computable Lipschitz degrees is more complex.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 161, Issue 12, September 2010, Pages 1588-1602
Journal: Annals of Pure and Applied Logic - Volume 161, Issue 12, September 2010, Pages 1588-1602