کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4663416 1345261 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Viscosity approximation methods for the split equality common fixed point problem of quasi-nonexpansive operators
ترجمه فارسی عنوان
روش تقریبی ویسکوزیته برای مسئله ی ثابت مساوی تقسیم بردار اپراتورهای شبه غیرقابل مقایسه
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

Let H1, H2, H3 be real Hilbert spaces, let A: H1 → H3, B: H2 → H3 be two bounded linear operators. The split equality common fixed point problem (SECFP) in the infinite-dimensional Hilbert spaces introduced by Moudafi (Alternating CQ-algorithm for convex feasibility and split fixed-point problems. Journal of Nonlinear and Convex Analysis) is equation(1)to find x∈F(U),y∈F(T) such that Ax=By,to find x∈F(U),y∈F(T) such that Ax=By,where U: H1 → H1 and T: H2 → H2 are two nonlinear operators with nonempty fixed point sets F(U) = {x ∈ H1: Ux = x} and F(T) = {x ∈ H2: Tx = x}. Note that, by taking B = I and H2 = H3 in (1), we recover the split fixed point problem originally introduced in Censor and Segal. Recently, Moudafi introduced alternating CQ-algorithms and simultaneous iterative algorithms with weak convergence for the SECFP (1) of firmly quasi-nonexpansive operators. In this paper, we introduce two viscosity iterative algorithms for the SECFP (1) governed by the general class of quasi-nonexpansive operators. We prove the strong convergence of algorithms. Our results improve and extend previously discussed related problems and algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Mathematica Scientia - Volume 36, Issue 5, September 2016, Pages 1474–1486
نویسندگان
, ,