کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4665267 | 1633805 | 2015 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Slicing inequalities for measures of convex bodies
ترجمه فارسی عنوان
برش نابرابری برای اندازه گیری اجسام محدب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اجسام محوری بخش ها، اندازه گرفتن، بدن تقاطع،
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
چکیده انگلیسی
It was proved in [18,19] that (1) holds for arbitrary origin-symmetric convex bodies, all k and all μ with Câ¤O(n). In this article, we prove inequality (1) with an absolute constant C for unconditional convex bodies and for duals of bodies with bounded volume ratio. We also prove that for every λâ(0,1) there exists a constant C=C(λ) so that inequality (1) holds for every nâN, every origin-symmetric convex body L in Rn, every measure μ with continuous density and the codimension of sections kâ¥Î»n. The proofs are based on a stability result for generalized intersection bodies and on estimates of the outer volume ratio distance from an arbitrary convex body to the classes of generalized intersection bodies. In the last section, we show that for some measures the behavior of minimal sections may be very different from the case of volume.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 283, 1 October 2015, Pages 473-488
Journal: Advances in Mathematics - Volume 283, 1 October 2015, Pages 473-488
نویسندگان
Alexander Koldobsky,