کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4666490 1345406 2012 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multifractal analysis of Bernoulli convolutions associated with Salem numbers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Multifractal analysis of Bernoulli convolutions associated with Salem numbers
چکیده انگلیسی
We consider the multifractal structure of the Bernoulli convolution νλ, where λ−1 is a Salem number in (1,2). Let τ(q) denote the Lq-spectrum of νλ. We show that if α∈[τ′(+∞),τ′(0+)], then the level setE(α):={x∈R:limr→0logνλ([x−r,x+r])logr=α} is non-empty and dimHE(α)=τ⁎(α), where τ⁎ denotes the Legendre transform of τ. This result extends to all self-conformal measures satisfying the asymptotically weak separation condition. We point out that the interval [τ′(+∞),τ′(0+)] is not a singleton when λ−1 is the largest real root of the polynomial xn−xn−1−⋯−x+1, n⩾4. An example is constructed to show that absolutely continuous self-similar measures may also have rich multifractal structures.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 229, Issue 5, 20 March 2012, Pages 3052-3077
نویسندگان
,