کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
475403 699303 2016 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms
ترجمه فارسی عنوان
یک رویکرد بهینه سازی چند هدف برای کار برنامه انبارداری انعطاف پذیر در ماشین های تصادفی با الگوریتم های تکاملی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی


• A methodology for addressing multi objective flexible job shop scheduling problem is proposed.
• Stability and makespan considered to optimize simultaneously in presence of machine breakdown.
• NRGA, NSGAII, and simulation used to tackle the problem.
• In three criteria NSGAII is leading algorithm and for two criteria NRGA is the leading one.

This paper addresses the stable scheduling of multi-objective problem in flexible job shop scheduling with random machine breakdown. Recently, numerous studies are conducted about robust scheduling; however, implementing a scheme which prevents a tremendous change between scheduling and after machine breakdown (preschedule and realized schedule, respectively) can be critical for utilizing available resources. The stability of the schedule can be detected by a slight deviation of start and completion time of each job between preschedule and realized schedule under the uncertain conditions. In this paper, two evolutionary algorithms, NSGA-II and NRGA, are applied to combine the improvement of makespan and stability simultaneously. A simulation approach is used to evaluate the state and condition of the machine breakdowns. After the introduction of the evaluation criteria, the proposed algorithms are tested on a variety of benchmark problems. Finally, through performing statistical tests, the algorithm with higher performance in each criterion is identified.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 73, September 2016, Pages 56–66
نویسندگان
, , , ,