کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
476203 699427 2008 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Scenario relaxation algorithm for finite scenario-based min–max regret and min–max relative regret robust optimization
چکیده انگلیسی

Most practical decision-making problems are compounded in difficulty by the degree of uncertainty and ambiguity surrounding the key model parameters. Decision makers may be confronted with problems in which no sufficient historical information is available to make estimates of the probability distributions for uncertain parameter values. In these situations, decision makers are not able to search for the long-term decision setting with the best long-run average performance. Instead, decision makers are searching for the robust long-term decision setting that performs relatively well across all possible realizations of uncertainty without attempting to assign an assumed probability distribution to any ambiguous parameter. In this paper, we propose an iterative algorithm for solving min–max regret and min–max relative regret robust optimization problems for two-stage decision-making under uncertainty (ambiguity) where the structure of the first-stage problem is a mixed integer (binary) linear programming model and the structure of the second-stage problem is a linear programming model. The algorithm guarantees termination at an optimal robust solution, if one exists. A number of applications of the proposed algorithm are demonstrated. All results illustrate good performance of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 35, Issue 6, June 2008, Pages 2093–2102
نویسندگان
, , , ,