کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
476955 1445557 2016 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A survey of data mining and social network analysis based anomaly detection techniques
ترجمه فارسی عنوان
یک نظرسنجی از تجزیه و تحلیل داده ها و تجزیه و تحلیل شبکه های اجتماعی بر اساس تکنیک های تشخیص آنومالی
کلمات کلیدی
تشخیص آنومالی، شبکه های اجتماعی آنلاین، تجزیه و تحلیل شبکه شبکه، داده کاوی، تشخیص آنومالی مبتنی بر گراف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی

With the increasing trend of online social networks in different domains, social network analysis has recently become the center of research. Online Social Networks (OSNs) have fetched the interest of researchers for their analysis of usage as well as detection of abnormal activities. Anomalous activities in social networks represent unusual and illegal activities exhibiting different behaviors than others present in the same structure. This paper discusses different types of anomalies and their novel categorization based on various characteristics. A review of number of techniques for preventing and detecting anomalies along with underlying assumptions and reasons for the presence of such anomalies is covered in this paper. The paper presents a review of number of data mining approaches used to detect anomalies. A special reference is made to the analysis of social network centric anomaly detection techniques which are broadly classified as behavior based, structure based and spectral based. Each one of this classification further incorporates number of techniques which are discussed in the paper. The paper has been concluded with different future directions and areas of research that could be addressed and worked upon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Egyptian Informatics Journal - Volume 17, Issue 2, July 2016, Pages 199–216
نویسندگان
, ,