کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
478139 1446025 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polynomial cases of the economic lot sizing problem with cost discounts
ترجمه فارسی عنوان
موارد چندجملهای از مشکلات اقتصادی بزرگ با تخفیف هزینه
کلمات کلیدی
مشکل بزرگ اندازه اقتصادی با تخفیف هزینه، خطی تقسیم شده، تخفیف تمام واحد اصلاح شده، تخفیف اضافی، الگوریتم های چندجملهای زمان
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی


• We analyzed new lot sizing problems arising in transportation logistics.
• We studied the case with modified all-unit discount transportation cost function and with incremental discount cost function.
• We formally proved properties of the optimal solution.
• We proposed polynomial time exact algorithms.
• We performed a computational study to show the efficiency of the algorithms.

In this paper we study the economic lot sizing problem with cost discounts. In the economic lot sizing problem a facility faces known demands over a discrete finite horizon. At each period, the ordering cost function and the holding cost function are given and they can be different from period to period. There are no constraints on the quantity ordered in each period and backlogging is not allowed. The objective is to decide when and how much to order so as to minimize the total ordering and holding costs over the finite horizon without any shortages. We study two different cost discount functions. The modified all-unit discount cost function alternates increasing and flat sections, starting with a flat section that indicates a minimum charge for small quantities. While in general the economic lot sizing problem with modified all-unit discount cost function is known to be NP-hard, we assume that the cost functions do not vary from period to period and identify a polynomial case. Then we study the incremental discount cost function which is an increasing piecewise linear function with no flat sections. The efficiency of the solution algorithms follows from properties of the optimal solution. We computationally test the polynomial algorithms against the use of CPLEX.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 237, Issue 2, 1 September 2014, Pages 519–527
نویسندگان
, , ,