کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
478191 700234 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Support vector machine for diagnosis cancer disease: A comparative study
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Support vector machine for diagnosis cancer disease: A comparative study
چکیده انگلیسی

Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, Quantum-behave Particle Swarm for training SVM is introduced. Another approach named least square support vector machine (LSSVM) and active set strategy are introduced. The obtained results by these methods are tested on a breast cancer dataset and compared with the exact solution model problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Egyptian Informatics Journal - Volume 11, Issue 2, December 2010, Pages 81–92
نویسندگان
, , ,