کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
479815 1446034 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution
ترجمه فارسی عنوان
سطوح کارآیی مینا واریانا، لمای استینزا و توزیع غیرمتعارف توزیع دانشجویی
کلمات کلیدی
دارایی، مالیه، سرمایه گذاری، آمار چندمتغیره نظریه سودمند
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
چکیده انگلیسی


• This paper extends Stein’s lemma for the multivariate extended skew-t distribution.
• Efficient portfolios are located on a mean–variance–skewness efficient surface.
• This surface is a direct extension of Markowitz’ efficient frontier.
• The multivariate models introduced by Simaan admit the same properties.
• There are also mean–variance–skewness efficient hyper-surfaces.

Recent advances in Stein’s lemma imply that under elliptically symmetric distributions all rational investors will select a portfolio which lies on Markowitz’ mean–variance efficient frontier. This paper describes extensions to Stein’s lemma for the case when a random vector has the multivariate extended skew-Student distribution. Under this distribution, rational investors will select a portfolio which lies on a single mean–variance–skewness efficient hyper-surface. The same hyper-surface arises under a broad class of models in which returns are defined by the convolution of a multivariate elliptically symmetric distribution and a multivariate distribution of non-negative random variables. Efficient portfolios on the efficient surface may be computed using quadratic programming.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Operational Research - Volume 234, Issue 2, 16 April 2014, Pages 392–401
نویسندگان
,