کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4917163 1428107 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Comparison of compressed air energy storage process in aquifers and caverns based on the Huntorf CAES plant
چکیده انگلیسی
CAESA (compressed air energy storage in aquifers) attracts more and more attention as the increase need of large scale energy storage. The compassion of CAESA and CAESC (compressed air energy storage in caverns) can help on understanding the performance of CAESA, since there is no on running CAESA project. In order to investigate the detail thermodynamic process, integrated wellbore-reservoir (cavern or aquifer) simulations of CAES (compressed air energy storage) are carried out based on parameters of the Huntorf CAES plant. Reasonable matches between monitored data and simulated results are obtained for the Huntorf cavern systems in the wellbore and cavern regions. In this study, the hydrodynamic and thermodynamic behaviors of CAES in cavern and aquifer systems are investigated, such as pressure and temperature distribution and variation in both the wellbore and cavern regions of the CAES systems. Performances of CAESA are investigated with numerical models and compared with the performances of CAESC. The comparisons of CAESC and CAESA indicate that the pressure variation in CAESA shows a wider variation range than that in CAESC, while the temperature shows a smooth variation due to the large grain specific heat of the grains in the porous media. The simulation results confirm that the CAES can be achieved in aquifers, and further that the performance of energy storage in aquifers can be similar to or better than CAESC, if the aquifers have appropriate reservoir properties, which means the gas bubble can be well developed in an aquifer with such properties and the aquifer should have closed or semi-closed boundaries. The impacts of gas-bubble volume, formation permeability, and aquifer boundary permeability on storage efficiency are investigated and the simulation results indicate that the increase of gas bubble volume and permeability can improve the efficiency, but the effect is not significant. The gas bubble boundary permeability has a small effect on the energy efficiency of the sustainable daily cycle but can significantly affect total sustainable cycle times. The analysis of thermodynamic behaviors in CAESA suggests that more attention should be paid to the heat storage, reservoir properties and two-phase flow processes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 181, 1 November 2016, Pages 342-356
نویسندگان
, , , , , ,