کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4919094 | 1428941 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a systematic modelling and optimizing of energy consumption and indoor thermal comfort for air-conditioning and mechanical ventilation (ACMV) systems. The models of extreme learning machines (ELM) and neural networks (NN) are established and evaluated. These well-trained models are then integrated with the computational intelligence techniques of sparse firefly algorithm (sFA) and sparse augmented firefly algorithm (sAFA). The sFA and sAFA aim to locate the global optimal operating points of the ACMV systems in real-time and predict energy saving rate (ESR) with a third order polynomial regression based on minimizing the mean squared errors (MSE) of the cost functions. This study also covers different indoor scenarios, such as general offices, lecture theatres and conference rooms. Given the well trained models, the maximum prediction of potential ESR can be â30% via the sparse AFA optimizations while maintaining indoor thermal comfort in the pre-defined comfort zone.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 149, 15 August 2017, Pages 1-15
Journal: Energy and Buildings - Volume 149, 15 August 2017, Pages 1-15
نویسندگان
Deqing Zhai, Yeng Chai Soh,