کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4926006 1431591 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Physical and hybrid methods comparison for the day ahead PV output power forecast
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Physical and hybrid methods comparison for the day ahead PV output power forecast
چکیده انگلیسی
An accurate forecast of the exploitable energy from Renewable Energy Sources, provided 24 h in advance, is becoming more and more important in the context of the smart grids, both for their stability issues and the reliability of the bidding markets. This work presents a comparison of the PV output power day-ahead forecasts performed by deterministic and stochastic models aiming to find out the best performance conditions. In particular, we have compared the results of two deterministic models, based on three and five parameters electric equivalent circuit, and a hybrid method based on artificial neural network. The forecasts are evaluated against real data measured for one year in an existing PV plant located at SolarTechlab in Milan, Italy. In general, there is no significant difference between the two deterministic models, being the three-parameter approach slightly more accurate (NMAE three-parameter 8.5% vs. NMAE five-parameter 9.0%). The artificial neural network, combined with clear sky solar radiation, generally achieves the best forecasting results (NMAE 5.6%) and only few days of training are necessary to provide accurate forecasts.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 113, December 2017, Pages 11-21
نویسندگان
, , , ,