کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4927765 | 1431956 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A Gaussian process-based dynamic surrogate model for complex engineering structural reliability analysis
ترجمه فارسی عنوان
یک مدل جایگزین پویایی مبتنی بر فرآیند گاوسی برای تجزیه و تحلیل قابلیت اطمینان ساختاری پیچیده مهندسی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
قابلیت اطمینان ساختاری مدل جایگزین، رگرسیون فرآیند گاوسی، احتمال شکست مونت کارلو،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی عمران و سازه
چکیده انگلیسی
The performance function of a complex engineering structure is always highly nonlinear and implicit, and its reliability needs to be evaluated through a time-consuming computer codes, such as finite element analysis (FEA). Thus, computational efficiency and precision are hard to unify when using traditional reliability methods in large-scale complex engineering structures. In this paper, a Dynamic Gaussian Process Regression surrogate model based on Monte Carlo Simulation (DGPR-based MCS) was proposed for the reliability analysis of complex engineering structures. A small number of training samples are created by random approach with FEA codes for building the Gaussian process regression (GPR) surrogate model, and the highly nonlinear and implicit performance function is approximated by GPR with an explicit formulation under a small sample condition. Then, combined with the trained GPR surrogate model, the most probable point (MPP) is quickly predicted using Monte Carlo sample technique without any further FEA. An iterative algorithm is presented to refine the GPR using the information of the MPP to continually improve the reconstruction precision in the important region, which significantly contributes to the probability of failure, and the probability of failure is taken as a convergence condition. The proposed method has advantages of high efficiency and high precision compared to the traditional response surface method (RSM). It can directly take advantage of existing engineering structural software without modification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Structural Safety - Volume 68, September 2017, Pages 97-109
Journal: Structural Safety - Volume 68, September 2017, Pages 97-109
نویسندگان
Guoshao Su, Lifeng Peng, Lihua Hu,