کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4929480 | 534347 | 2016 | 9 صفحه PDF | دانلود رایگان |
This study assessed the performances of the traditional temperature-index snowmelt runoff model (SRM) and an SRM model with a finer zonation based on aspect and slope (SRMÂ +Â AS model) in a data-scarce mountain watershed in the Urumqi River Basin, in Northwest China. The proposed SRMÂ +Â AS model was used to estimate the melt rate with the degree-day factor (DDF) through the division of watershed elevation zones based on aspect and slope. The simulation results of the SRMÂ +Â AS model were compared with those of the traditional SRM model to identify the improvements of the SRMÂ +Â AS model's performance with consideration of topographic features of the watershed. The results show that the performance of the SRMÂ +Â AS model has improved slightly compared to that of the SRM model. The coefficients of determination increased from 0.73, 0.69, and 0.79 with the SRM model to 0.76, 0.76, and 0.81 with the SRMÂ +Â AS model during the simulation and validation periods in 2005, 2006, and 2007, respectively. The proposed SRMÂ +Â AS model that considers aspect and slope can improve the accuracy of snowmelt runoff simulation compared to the traditional SRM model in mountain watersheds in arid regions by proper parameterization, careful input data selection, and data preparation.
Journal: Water Science and Engineering - Volume 9, Issue 4, October 2016, Pages 265-273