| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4931792 | 1433263 | 2016 | 15 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Primary facets of order polytopes
												
											ترجمه فارسی عنوان
													جنبه های اولیه چند منظوره سفارش 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												نیمه مدرن، نیمه صوتی چند جمله ای، سفارش چندساله، نابرابری تعریف فاکتور،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات کاربردی
												
											چکیده انگلیسی
												Mixture models on order relations play a central role in recent investigations of transitivity in binary choice data. In such a model, the vectors of choice probabilities are the convex combinations of the characteristic vectors of all order relations of a chosen type. The five prominent types of order relations are linear orders, weak orders, semiorders, interval orders and partial orders. For each of them, the problem of finding a complete, workable characterization of the vectors of probabilities is crucial-but it is reputably inaccessible. Under a geometric reformulation, the problem asks for a linear description of a convex polytope whose vertices are known. As for any convex polytope, a shortest linear description comprises one linear inequality per facet. Getting all of the facet-defining inequalities of any of the five order polytopes seems presently out of reach. Here we search for the facet-defining inequalities which we call primary because their coefficients take only the values â1, 0 or 1. We provide a classification of all primary, facet-defining inequalities of three of the five order polytopes. Moreover, we elaborate on the intricacy of the primary facet-defining inequalities of the linear order and the weak order polytopes.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Psychology - Volume 75, December 2016, Pages 231-245
											Journal: Journal of Mathematical Psychology - Volume 75, December 2016, Pages 231-245
نویسندگان
												Jean-Paul Doignon, Selim Rexhep, 
											