کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942027 1436980 2017 57 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Minimal sets on propositional formulae. Problems and reductions
ترجمه فارسی عنوان
مجموعه های حداقل در فرمول گزاره. مشکلات و کاهش
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Boolean Satisfiability (SAT) is arguably the archetypical NP-complete decision problem. Progress in SAT solving algorithms has motivated an ever increasing number of practical applications in recent years. However, many practical uses of SAT involve solving function as opposed to decision problems. Concrete examples include computing minimal unsatisfiable subsets, minimal correction subsets, prime implicates and implicants, minimal models, backbone literals, and autarkies, among several others. In most cases, solving a function problem requires a number of adaptive or non-adaptive calls to a SAT solver. Given the computational complexity of SAT, it is therefore important to develop algorithms that either require the smallest possible number of calls to the SAT solver, or that involve simpler instances. This paper addresses a number of representative function problems defined on Boolean formulae, and shows that all these function problems can be reduced to a generic problem of computing a minimal set subject to a monotone predicate. This problem is referred to as the Minimal Set over Monotone Predicate (MSMP) problem. This work provides new ways for solving well-known function problems, including prime implicates, minimal correction subsets, backbone literals, independent variables and autarkies, among several others. Moreover, this work also motivates the development of more efficient algorithms for the MSMP problem. Finally the paper outlines a number of areas of future research related with extensions of the MSMP problem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 252, November 2017, Pages 22-50
نویسندگان
, , ,