کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4942055 | 1436982 | 2017 | 48 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Latent tree models for hierarchical topic detection
ترجمه فارسی عنوان
مدل های درخت درختی برای تشخیص موضوع سلسله مراتبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل های گرافیکی احتمالی، تجزیه و تحلیل متن، تحلیل سلسله مراتبی درخت نهایی تشخیص موضوع سلسله مراتبی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
We present a novel method for hierarchical topic detection where topics are obtained by clustering documents in multiple ways. Specifically, we model document collections using a class of graphical models called hierarchical latent tree models (HLTMs). The variables at the bottom level of an HLTM are observed binary variables that represent the presence/absence of words in a document. The variables at other levels are binary latent variables that represent word co-occurrence patterns or co-occurrences of such patterns. Each latent variable gives a soft partition of the documents, and document clusters in the partitions are interpreted as topics. Latent variables at high levels of the hierarchy capture long-range word co-occurrence patterns and hence give thematically more general topics, while those at low levels of the hierarchy capture short-range word co-occurrence patterns and give thematically more specific topics. In comparison with LDA-based methods, a key advantage of the new method is that it represents co-occurrence patterns explicitly using model structures. Extensive empirical results show that the new method significantly outperforms the LDA-based methods in term of model quality and meaningfulness of topics and topic hierarchies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 250, September 2017, Pages 105-124
Journal: Artificial Intelligence - Volume 250, September 2017, Pages 105-124
نویسندگان
Peixian Chen, Nevin L. Zhang, Tengfei Liu, Leonard K.M. Poon, Zhourong Chen, Farhan Khawar,