کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942210 1437160 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods
ترجمه فارسی عنوان
تشخیص شبیه سازی قلب بر مبنای تبدیل موجک و همکاری بین شبکه عصبی مصنوعی و روش های آنیلینگ همسایه اصلاح شده است
کلمات کلیدی
شکم قلب شبکه های عصبی مصنوعی، تغییر شکل موج، انجیر همسایه، انتشار اولیه،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Early recognition of heart disease plays a vital role in saving lives. Heart murmurs are one of the common heart problems. In this study, Artificial Neural Network (ANN) is trained with Modified Neighbor Annealing (MNA) to classify heart cycles into normal and murmur classes. Heart cycles are separated from heart sounds using wavelet transformer. The network inputs are features extracted from individual heart cycles, and two classification outputs. Classification accuracy of the proposed model is compared with five multilayer perceptron trained with Levenberg-Marquardt, Extreme-learning-machine, back-propagation, simulated-annealing, and neighbor-annealing algorithms. It is also compared with a Self-Organizing Map (SOM) ANN. The proposed model is trained and tested using real heart sounds available in the Pascal database to show the applicability of the proposed scheme. Also, a device to record real heart sounds has been developed and used for comparison purposes too. Based on the results of this study, MNA can be used to produce considerable results as a heart cycle classifier.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence in Medicine - Volume 78, May 2017, Pages 23-40
نویسندگان
, ,