کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942564 1437411 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Performance improvement of deep neural network classifiers by a simple training strategy
ترجمه فارسی عنوان
بهبود عملکرد طبقه بندی های شبکه های عصبی عمیق با یک استراتژی آموزشی ساده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Improving the classification performance of Deep Neural Networks (DNN) is of primary interest in many different areas of science and technology involving the use of DNN classifiers. In this study, we present a simple training strategy to improve the classification performance of a DNN. In order to attain our goal, we propose to divide the internal parameter space of the DNN into partitions and optimize these partitions individually. We apply our proposed strategy with the popular L-BFGS optimization algorithm even though it can be applied with any optimization algorithm. We evaluate the performance improvement obtained by using our proposed method by testing it on a number of well-known classification benchmark data sets and by performing statistical analysis procedures on classification results. The DNN classifier trained with the proposed strategy is also compared with the state-of-the-art classifiers to demonstrate its effectiveness. Our classification experiments show that the proposed method significantly enhances the training process of the DNN classifier and yields considerable improvements in the accuracy of the classification results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 67, January 2018, Pages 14-23
نویسندگان
, , , ,