کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4942579 | 1437413 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive recurrent neural network with Lyapunov stability learning rules for robot dynamic terms identification
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a recurrent neural network coupled with Kalman filter is proposed to identify dynamic terms of robotic manipulator. By cooperating some inherent characteristics of robot, this network has the capability to individually identify nonlinear terms using Weighted Augmentation Error (WAE). To present the infrastructure of architecture, an adaptive scheme based on the conventional Back Propagation (BP) is firstly driven using the Gradient Descent (GD) method. Additionally, a stable adaptive updating rule is extracted from the discrete time Lyapunov candidate as an approach for the general nonlinear system identification. Then, this approach is applied to the predefined network. To experimentally validate the computational efficiency and control applicability of the proposed method, Adaptive Neural Network Based Inverse Dynamic Control (ANN-Based-IDC) is employed on a laboratory-scaled twin-rotor CE-150 helicopter. This experiment illustrates enhancement of steady-state performance from 2-to-3 times more in compared with simple PID. Moreover, disturbance rejection and robustness tests admit capability of the method for online dynamic identification in the presence of output and dynamic perturbation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 65, October 2017, Pages 1-11
Journal: Engineering Applications of Artificial Intelligence - Volume 65, October 2017, Pages 1-11
نویسندگان
Pedram Agand, Mahdi Aliyari Shoorehdeli, Ali Khaki-Sedigh,