کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942688 1437415 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Revenue prediction by mining frequent itemsets with customer analysis
ترجمه فارسی عنوان
پیش بینی درآمد توسط مجموعه معدن مکرر معدن با تجزیه و تحلیل مشتری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Conventional frequent itemsets mining does not take into consideration the relative benefit or significance of transactions belonging to different customers. Therefore, frequent itemsets with high revenues cannot be discovered through the conventional approach. In this study, we extended the conventional association rule problem by associating the frequency-monetary (FM) weight with a transaction to reflect the interest or intensity of customer values and focusing on revenue. Furthermore, we proposed a new algorithm for discovering frequent itemsets with high revenues from FM-weighted transactions with customer analysis. The experimental results from the survey data revealed that the top k frequent itemsets with high revenues discovered using the proposed approach outperformed those discovered using the conventional approach in the prediction of revenues from customers in next-period transactions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 63, August 2017, Pages 85-97
نویسندگان
,