کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942829 1437422 2016 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Iterated variable neighborhood search for the capacitated clustering problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Iterated variable neighborhood search for the capacitated clustering problem
چکیده انگلیسی

The NP-hard capacitated clustering problem (CCP) is a general model with a number of relevant applications. This paper proposes a highly effective iterated variable neighborhood search (IVNS) algorithm for solving the problem. IVNS combines an extended variable neighborhood descent method and a randomized shake procedure to explore effectively the search space. The computational results obtained on three sets of 133 benchmarks reveal that the proposed algorithm competes favorably with the state-of-the-art algorithms in the literature both in terms of solution quality and computational efficiency. In particular, IVNS discovers an improved best known result (new lower bounds) for 28 out of 83 most popular instances, while matching the current best known results for the remaining 55 instances. Several essential components of the proposed algorithm are investigated to understand their impacts on the performance of algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Applications of Artificial Intelligence - Volume 56, November 2016, Pages 102-120
نویسندگان
, ,