کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942955 1437616 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A class of hybrid multilayer perceptrons for software development effort estimation problems
ترجمه فارسی عنوان
یک کلاس چندپایه ی هیبرید برای پیش بینی مشکلات تلاش برای توسعه نرم افزار
کلمات کلیدی
هیپرترپترون چند لایه، مورفولوژی ریاضی، شیب نزولی، توسعه نرم افزار، برآورد تلاش،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
The dilation-erosion-linear perceptron is a hybrid morphological neuron which has been recently proposed in the literature to solve some prediction problems. However, a drawback arises from such model for building mappings to solve tasks with complex input-output nonlinear relationships within effort estimation problems. In this sense, to overcome this limitation, we present a particular class of hybrid multilayer perceptrons, called the multilayer dilation-erosion-linear perceptron (MDELP), to deal with software development effort estimation problems. Each processing unit of the proposed model is composed of a mix between a hybrid morphological operator (given by a balanced combination between dilation and erosion operators) and a linear operator. According to Pessoa and Maragos's ideas, we propose a descending gradient-based learning process to train the proposed model. Besides, we conduct an experimental analysis using relevant datasets of software development effort estimation and the achieved results are discussed and compared, according to MMRE and PRED25 measures, to those obtained by classical and state of the art models presented in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 90, 30 December 2017, Pages 1-12
نویسندگان
, , ,