کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943165 | 1437621 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Online feature importance ranking based on sensitivity analysis
ترجمه فارسی عنوان
رتبه بندی اهمیت آنلاین بر اساس تجزیه و تحلیل حساسیت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ویژگی رتبه بندی، یادگیری آنلاین، فرود شیبدار، حساسیت،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Online learning is a growing branch of data mining which allows all traditional data mining techniques to be applied on a online stream of data in real time. In this paper, we present a fast and efficient online sensitivity based feature ranking method (SFR) which is updated incrementally. We take advantage of the concept of global sensitivity and rank features based on their impact on the outcome of the classification model. In the feature selection part, we use a two-stage filtering method in order to first eliminate highly correlated and redundant features and then eliminate irrelevant features in the second stage. One important advantage of our algorithm is its generality, which means the method works for correlated feature spaces without preprocessing. It can be implemented along with any single-pass online classification method with separating hyperplane such as SVMs. The proposed method is primarily developed for online tasks, however, we achieve very significant experimental results in comparison with popular batch feature ranking/selection methods. We also perform experiments to compare the method with available online feature ranking methods. Empirical results suggest that our method can be successfully implemented in batch learning or online mode.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 85, 1 November 2017, Pages 397-406
Journal: Expert Systems with Applications - Volume 85, 1 November 2017, Pages 397-406
نویسندگان
Alaleh Razmjoo, Petros Xanthopoulos, Qipeng Phil Zheng,