کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943225 | 1437617 | 2017 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Augmenting feature model through customer preference mining by hybrid sentiment analysis
ترجمه فارسی عنوان
تقویت مدل ویژگی از طریق معیارهای ترجیحی مشتری با تحلیل احساسات ترکیبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل ویژگی، معادن ترجیح مشتری، تجزیه و تحلیل احساسات، برنامه ریزی خط تولید
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
A feature model is an essential tool to identify variability and commonality within a product line of an enterprise, assisting stakeholders to configure product lines and to discover opportunities for reuse. However, the number of product variants needed to satisfy individual customer needs is still an open question, as feature models do not incorporate any direct customer preference information. In this paper, we propose to incorporate customer preference information into feature models using sentiment analysis of user-generated online product reviews. The proposed sentiment analysis method is a hybrid combination of affective lexicons and a rough-set technique. It is able to predict sentence sentiments for individual product features with acceptable accuracy, and thus augment a feature model by integrating positive and negative opinions of the customers. Such opinionated customer preference information is regarded as one attribute of the features, which helps to decide the number of variants needed within a product line. Finally, we demonstrate the feasibility and potential of the proposed method via an application case of Kindle Fire HD tablets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 89, 15 December 2017, Pages 306-317
Journal: Expert Systems with Applications - Volume 89, 15 December 2017, Pages 306-317
نویسندگان
Zhou Feng, Jiao Jianxin Roger, Yang Xi Jessie, Lei Baiying,